Приступая к малярным работам, любому неспециалисту следует хоть немного узнать о влиянии света на цвет, ведь от этих характеристик зависит верный подбор оттенка для ваших стен, полов, потолков. Часто бывает, что краска, которая в магазине выглядела интересно и свежо, смотрится бледно и негармонично, будучи нанесенной на поверхности в помещении квартиры. Наша статья позволит вам получить более точное представление о науке цвета и его взаимодействии со светом.

Итак, начнем с определений. Свет - это лучистая энергия, которую производят различные источники, как естественные (солнце, луна, звезды), так и искусственные (электрические лампы и свечи). Цвет в свою очередь получается в результате реагирования предмета на световые волны и закономерно зависит от спектрального состава этих излучений.

Таким образом, способность предмета к поглощению, пропусканию или отражению лучей является основой, определяющий его видимый цвет.

Характеристики цвета

В ярком освещении можно увидеть исходный цвет предмета, однако, как правило, это редко кому и когда удается. Так как, несмотря на относительное постоянство, природный цвет выглядит немного иначе для человеческого глаза за счет влияния ряда факторов:

  • влияния контрастных «соседей»
  • физических свойств поверхности предмета
  • воздушной среды
  • расстояния, на которое удален предмет от наблюдателя
  • силы и спектрального состава прямых и отраженных лучей

То есть, мы, безусловно, знаем, что трава зеленая, а клубника красная, однако та же самая клубника будет выглядеть абсолютно иначе с близкого расстояния в солнечный день и разглядываемая издалека дождливым вечером.

Фактически человеческий глаз не способен различать чистые цвета - каждый из объектов мы видим с многочисленными цветовыми оттенками.

Цвета разделяются на две категории:

  • Ахроматические цвета, к которым относят белый, черный и серый, не обладают цветом и различаются друг от друга по светлоте. Белый цвет даже с еле уловимым желтоватым оттенком будет относиться к хроматической категории.
  • Хроматические цвета - спектральные цвета с учетом всех промежуточных оттенков.

Для разделения хроматических цветов существуют несколько определяющих критериев:

  • Цветовой тон - характеристика цветности, которая определяется длиной волны, соответствующей доминирующему монохроматическому излучению.
  • Светлота - оттеночная характеристика, ее показатели варьируются в пределах от чисто белого до спектрального цвета.
  • Насыщенность - показатель количественного содержания чистого монохроматического цвета в световом потоке.

Еще одна важная характеристика цвета - это его заметность. Заметность может быть:

  • Абсолютной.
  • Относительной (цвет, заметный не по своей природе, а за счет выделяющейся светлоты на фоне ближайшего окружения).

Заметность цвета необходимо учитывать, желая привлечь внимание к определенной части композиции, интерьера. Наиболее заметными считаются насыщенные оранжево-красные тона, синий цвет наименее выдается с этой точки зрения.

Зависимость цвета от света

Цветной световой поток, попадая на поверхность предмета, логично влияет на его окраску. Разумеется, предметы меняют оттенки, руководствуясь определенными правилами:

  • Предметы, окраска которых попадает в один тон со световым потоком, получают увеличение насыщенности цвета.
  • Цвета противоположного оттенка становятся менее насыщенными и темнеют.
  • Остальные цвета слегка окрашивается под цвет освещения.

Соответственно, так как искусственный свет электрических лам является желто-оранжевым, он придает соответствующий оттенок всем предметам, находящимся в зоне его достижения:

  • Красный цвет становится более светлым и насыщенным.
  • Желтый помимо осветления теряет насыщенность.
  • Оранжевый цвет светлеет, но при этом приобретает красные оттенки.
  • Голубой, синий, фиолетовый и цвет морской волны темнеют - при этом голубой зеленеет, синий делается менее насыщенным, а фиолетовый кажется красноватым.

Красный свет солнца на закате или рассвете придает всем цветам соответствующие оттенки. Зеленые предметы темнеют, красные логично приобретают особую насыщенность.

На изменения цвета влияет не только цветность светового потока, но и интенсивность освещения:

  • Яркое освещение «обеляет» предметы.
  • Слепящий свет окрашивает вещи в желтый.
  • В темных пространствах цвета менее различимы, при этом голубые тона становятся наиболее светлыми и практически неотличимыми от белых.

То, что цвет - это электромагнитная волна, воспринимаемая человеческим глазом и видимый участок спектра, И. Ньютон описал в работе «Оптика». Несмотря на то, что задолго до этого английский философ и естествоиспытатель Роджер Бэкон также наблюдал оптический спектр в стакане с водой, первое объяснение видимого излучения дал именно И. Ньютон. Подобные попытки исследования цвета чуть позже были проведены Иоганном Гете в труде «Теория цветов», в XVIII веке, в России, М. В. Ломоносовым.

И. Ньютону удалось разложить белый свет на цвета спектра что явилось первым значительный прорывом в изучении цвета.

Главной предпосылкой ученого к открытию спектра стало стремление усовершенствовать линзы для телескопов: основным недостатком телескопических изображений являлось наличие окрашенных в радужные цвета краев.

В 1666 году он произвел в Кембридже опыт разложения белого цвета призмой: через маленькое круглое отверстие в ставне окна в затемненную комнату проникал луч света, а на его пути оказывалась стеклянная трехгранная призма, пучок света в которой преломлялся . На экране, стоявшем за призмой, появлялась разноцветная полоса, позднее названная спектром. Он определил, что луч белого дневного света составляют лучи разных цветов, а именно: красного, оранжевого, желтого, зеленого, синего (голубого), индиго и глубоко фиолетового.

Ньютон И. Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света. - М.: Государственное издательство тсхнико- теоретической литературы, 1954.

Он объяснил, что их смешение является главной причиной многообразия цветовых гармоний, богатства красок природы.

Он так же обнаружил, что цветной луч, отражаясь и преломляясь бесконечное множество раз, остается той же окраски, откуда следовало, что цвет - некая устойчивая характеристика. Он также заметил, что при добавлении к цветному лучу белого света происходит его усложнение, в результате чего цвет разрежается и слабнет, пока не исчезнет совсем, с образованием серого или белого. Таким образом, чем сложнее цвет, тем он менее полон и интенсивен.

И. Ньютон установил также, что можно наоборот, смешав семь цветов спектра, вновь получить белый цвет. Для этого он поместил на пути разложенного призмой цветного пучка (спектра) двояковыпуклую линзу, которая снова налагает различные цвета один на другой; сходясь, они образуют на экране белое пятно. Если же поместить перед линзой (на пути цветных лучей) узкую непрозрачную полоску, чтобы задержать какую-либо часть спектра, то пятно на экране станет цветным.

Ученый также определил показатель преломления лучей различного цвета. Для этой цели в экране прорезалось отверстие; перемещая экран, можно было выпустить через отверстие узкий пучок лучей того или иного цвета. Такой выделенный пучок, преломляясь во второй призме, уже не растягивался в полосу: ему соответствует определенный показатель преломления, значение которого зависит от цвета выделенного пучка. Зависимость показателя преломления от цвета получила название «дисперсия цвета» (от лат. dispergo – разбрасываю).

Изучая природу света и цвета, Ньютон пришел к выводу, что постоянные цвета естественных тел происходят по причине того, что некоторые тела отражают одни сорта лучей, другие тела - иные сорта обильнее, чем остальные 1 . Цветные порошки, как заметил Ныотон, подавляют и удерживают в себе весьма значительную часть света, которым они освещаются. И они становятся цветными, отражая наиболее обильно свет их собственной окраски 2 . Ньютон И. Оптика или трактат об сражениях, преломлениях, изгибаниях и цветах света. - М.: Государственное издательство техшко- теоретической литературы, 1954. - 367 с.

Необходимо сказать, что, несмотря на дальнейшие изыскания, данную теорию (корпускулярная теория света) считать неверной нельзя, потому что цвет действительно можно рассматривать как поток фотонов - элементарных безмассовых частиц, двигающихся со скоростью света, и имеющих электрический заряд, равный нулю. Фотону как квантовой частице свойственен корпускулярно-волновой дуализм, то есть проявление одновременно свойств частицы и волны. Назвать И. Ньютона противником волновой теории не представляется возможным: он не отвергал эту идею. Ньютон провел аналогию между цветом и звуком, считая, что оба этих явления имеют подобную природу, чем, вероятно, предвосхитил открытие электромагнитной природы звука и света. «Как звук колокольчика, или музыкальной струны, или других звучащих тел есть не что иное, как колеблющееся движение, и в воздухе от предмет распространяется не что иное, как это движение... в последнем же появляются ощущения этих движений в форме цветов» .

С другой стороны в трактате, представленном в Королевское общество в 1675 году, он пишет, что свет не может быть просто колебаниями эфира, так как тогда он, например, мог бы распространяться по изогнутой трубе, как это делает звук. Но также он предлагает считать, что распространение света возбуждает колебания в эфире, что и порождает дифракцию и другие волновые эффекты.

В XVIII веке в России, М. В. Ломоносов исследуя проблемы цветовых явлений и делает ряд важных открытий, которые не получили широкой известности. Он обнаружил, что свет составляют, как бы три эфира, которые истекают от солнца и светящихся тел подобно реке. Эфиры обладают тремя типами движения, которые он назвал беспрестанным, зыблющимся и коловратным . Эфирные потоки составляют три типа частиц разных размеров. Из них, соляные частицы составляют эфир красного, ртутные - желтого, серные - голубого цвета. Остальные цвета образуются смешением красного, желтого и голубого. Эфирные частицы сцепляются с подходящими частицами на поверхности предметов и заставляют их колебаться с той или иной интенсивностью. Часть движения, таким образом, передастся, а оставшееся движение определяет видимый нами цвет. Если поверхность предмета поглотила коловратное или вращающиеся движение эфирных частиц - глаз видит черный цвет.

Так Ломоносов открыл физико-химическую природу цвета .

Согласно этой теории, температура влияет на интенсивность краски, что он доказал на опыте. Глаз человека воспринимает цвет, благодаря тому, что движение эфирных частиц, не поглощенное предметом, производит соответствующее движение на дне глаза.

По мере развития волновой теории света было уточнено то, что каждому цвету соответствует определенная частота световой волны. Английский ученый Т. Юнг , в 1800 году разработавший волновую теорию интерференции на основе сформулированного им принципа суперпозиции волн . По результатам своих опытов он довольно точно оценил длину волны света в различных цветовых диапазонах.

Согласно принципу интерференции (нелинейное сложение интенсивностей нескольких световых волн) темноту можно получить, сложив свет со светом, то есть взаимно погасить свет. Юнг исследовал различные приложения принципа интерференции и пришел к заключению, что свет должен распространяться волновым движением. Объяснить полосы интерференции с точки зрения истечения оказалось совершенно невозможным. Он вычислил также среднюю длину волны света различных цветов. Томас Юнг предполагал, что цвета соответствуют волнам различной длины, при чем в красных лучах волны самые длинные, в фиолетовых - самые короткие.

С развитием квантовой механики утвердилась идея Луи де Бройля о корпускулярно-волновом дуализме, по которой свет должен обладать одновременно волновыми свойствами, чем объясняется его способность к дифракции и интерференции, и корпускулярными свойствами, чем объясняется его поглощение и излучение.

Для полного понимания сущности цвета обратимся к понятию электромагнитного излучения , то есть к распространяющемуся в пространстве возмущению электромагнитного поля. Электромагнитное излучение принято делить по частотным диапазонам, между которыми нет резких переходов - границы условны. На Рис.2 представлен полный спектр электромагнитного излучения, отградуированный по уменьшению частоты: радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и гамма-излучение.

Рисунок 2 ‑ Полный спектр электромагнитного излучения

В общем спектре электромагнитных излучений видимое излучение составляет очень небольшой процент.

Свет - это видимое излучение, т. е. электромагнитные волны в интервале частот, воспринимаемых человеческим глазом (7,5 10 14 -4,3 10 14 Гц).

Цвет - одно из свойств материального мира, воспринимаемое как осознанное зрительное ощущение. Тот или иной цвет «присваивается» человеком объектам в процессе их зрительного восприятия. В подавляющем большинстве случаев цветовое ощущение возникает в результате воздействия на глаз потоков электромагнитного излучения из диапозона длин волн, в котором это излучение воспринимается глазом (видимый диапазон - длины волн от 380 до 760нм).

Учение о совокупности данных физики, физиологии, психологии и других наук о цвете называется цветоведением. Цветоведение включает физическую теорию цвета, теорию цветового зрения, вопросы измерения и количественного выражения цвета (колориметрии), влияния цвета на человека, рассматриваемые с точки зрения, физиологии, психологии и эстетики. Знание цветоведения - важнейшее условие правильного решения вопросов, возникающих при создании искусственной цветовой среды человека.

Поток лучистой энергии, падая на поверхность, частично проникает в глубь тела и угасает по мере проникновения его в толщу, а частично отражается от поверхности. Степень угасания зависит от характеристики лучевого потока и свойств тела, в котором происходит процесс. В таком случае говорят, что поверхность поглощает лучи.

В зависимости от расстояния, на которое световой луч проникает в глубь тела до полного угасания, все тела условно подразделяют на прозрачные, полупрозрачные и непрозрачные. Абсолютно прозрачным для всех лучей считают только вакуум. К прозрачным телам относятся воздух, вода, стекло, хрусталь, некоторые виды пластмасс. Металлы принято считать непрозрачными. Фарфор, матовое стекло - полупрозрачные тела.

Отражение лучей. Луч света, падая на гладкую поверхность, отражается от нее под тем же углом, т. е. угол падения луча равен углу его отражения. По характеру отражения лучей света поверхности делят на зеркальные, глянцевые и матовые.

Зеркальные поверхности отражают практически весь лучевой поток под тем же углом к поверхности, не рассеивая его.

Глянцевые поверхности, например окрашенные эмалевыми красками, отражают значительную часть лучей в направлении, близком к зеркальному, несколько рассеивая их. Примером такого рода поверхностей являются поверхности, окрашенные эмалевыми красками.

Матовые поверхности рассеивают лучи света в результате некоторой шероховатости (например, свежая высохшая штукатурка, стена, покрытая клеевой краской, неокрашенное дерево).

Преломление света и дисперсия

Падая под углом к поверхности и переходя из одной среды в другую, луч света меняет свое первоначальное направление - преломляется. Так, проходя через стеклянную призму, луч преломляется дважды и дает на экране вместо круглого белого пятна ярко окрашенную радужную полоску, называемую спектром. Это явление получило название дисперсии (от латинского слова dispergo - разбрасываю).

Исаак Ньютон в 1666г. положил начало изучению дисперсии света. В спектре различают семь главных цветов, постепенно переходящих из одного в другой, занимая в нем участки различного размера (рис. 66). Это объясняется тем, что цветовые лучи, входящие в состав белого цвета, неодинаково преломляются призмой. Наименьшее отклонение от первоначального направления получает красная часть спектра, наибольшее - фиолетовая, следовательно, наименьший показатель преломления у красных лучей, наибольший - у фиолетовых.

Если из спектра выделить пучок лучей одного цвета, например красного, и пропустить его через вторую призму, то пучок вследствие преломления отклонится, но уже не разлагаясь на составные тона и не изменяя цвета.

Цветные пучки такого рода называются однородными или монохроматическими. Мощность однородного (монохроматического) излучения измеряют в ваттах.

Вышедшие из призмы цветные лучи спектра можно собрать линзой или второй призмой и получить на экране пятно белого света. Разложением пучка белого света на спектр установлено, что белый свет состоит из цветных лучей. Длина воли лучей видимого спектра различна и лежит приблизительно в пределах от 380 до 760нм.

Невидимая часть спектра - это химически активные ультрафиолетовые лучи с длиной волн менее 380нм и тепловые - инфракрасные с длиной волн более 780нм. Наличием невидимых лучей в солнечном свете объясняется отчасти разрушительное влияние света на пигменты и лакокрасочные покрытия. Некоторые искусственные источники света (например, ртутная лампа, богатая ультрафиолетовыми лучами) применяют для испытания пигментов на светостойкость.

В зависимости от спектрального состава отражаемого лучевого потока поверхности делят на две группы: поверхности ахроматических тонов (бесцветные) и хроматические (цветные).

Ахроматические и хроматические тона

Поверхности ахроматических тонов обладают свойством отражать лучевой поток одинаково всеми частями видимого света. Эти поверхности вызывают ощущение белых, черных и всех промежуточных серых тонов. Подобные отражения лучевого потоканазываются неизбирательными, они отличаются одно от другого коэффициентом отражения, определяющим их светлоту.

Ахроматическая шкала, которой пользуются для визуального определения коэффициента отражения света поверхностью, представляет собой набор выкрасок (образцов) бесцветных тонов различной светлоты - от белого до черного.

Трудно отыскать поверхности чистого ахроматического тона. Известны различные виды теплых и холодных тонов, которые условно в обиходе принято называть серыми, но в некоторых имеется примесь спектральных цветовых тонов.

Поверхности хроматических тонов обладают свойством избирательного отражения лучей. В потоке отраженного света преобладают монохроматические лучи одного или нескольких видов. Такие поверхности отличаются друг от друга тремя свойствами: цветовым тоном, светлотой и насыщенностью.

Цветовой тон - основная характеристика цвета, определяемая длиной волны, которая соответствует преобладающему монохроматическому излучению. Естественным рядом цветовых тонов является спектр солнечного света.

Светлотой называется ряд оттенков одного и того же цветового тона от чисто белого до чистого спектрального цвета. Оценивается коэффициентом отражения.

Насыщенность определяется содержанием чистого монохроматического цвета в смешанном отраженном световом потоке. Насыщенность цвета характеризует степень разбавления спектрального цвета белым.

При составлении букета надо обращать внимание не только на набор цветов и декоративных элементов, значение цветка, а и на то, как он будет выглядеть при разном освещении и как цветовая гамма влияет на человека.

И. Ньютон в 1666 году, используя солнечный луч и призму, определил цветовой спектр. Красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый – это те цвета, которые составляют собой белый свет. Иначе говоря, свет – это видимая человеческим глазом область электромагнитных излучений (электромагнитная энергия). Как мы знаем со школы, излучения исходят от основного источника – Солнца и подразделяются на инфракрасные, ультрафиолетовые и видимые для глаз волны. Последний вид излучений – это и есть тот белый свет, который мы видим.

Цветовой спектр Ньютона

Начиная от древнегреческих ученых, люди пытались найти ответ на вопросы ”что такое свет?”, ”откуда он берется?” и ”как он распространяется?”. В наше время, когда ученые имеют намного больше возможностей, чем Ньютон и другие, наука говорит о двойственности природы света. Проникая через отверстие, он ведет себя как волна, а попадая, например, на металлическую поверхность, ведет себя как частица – фотон – бомбардирует эту поверхность.

Световые волны

Под волной понимают имеющую поступательное движение часть колебания. Они могут по- разному преломляться и вызывать различные цветовые ощущения. Это зависит от их длины.

Поток света, достигнув поверхности тела, делится на три части: отраженную, пропущенную и поглощенную.

Тела могут быть прозрачными и непрозрачными. Только прозрачным телам свойственно отражать, поглощать и пропускать свет через себя. Цвет предмета мы определяем после того, как наш глаз зафиксирует взаимодействие света и предмета, которое зависит от длины волн отраженного света. Белый лист – белый потому, что отражает все цвета, зеленый будет отражать преимущественно зеленые цвета, синий – синие и т.д. если предмет поглощает все цвета, то он воспринимается глазом как черный.

Часть фиолетовых, синих, голубых лучей задерживается и рассеивается воздушной средой. В результате мы видим синее небо и розовый снег на вершинах гор.

Отражение бывает зеркальным (угол отражения луча такой же, как и падения) и диффузионным, при котором луч отражения может быть разным. Поверхности, с которыми контактирует человек, отражают лучи частично зеркально, а частично диффузионно. Блестящие и глянцевые поверхности дают четкое зеркальное отражение цвета, а матовым и шероховатым поверхностям свойственна диффузия. Именно потому глаз видит не так четко отображенный источник света.

Источники света

Естественные

Естественные.Солнце и другие составные Космоса. Но свечение планет, звезд и Луны мы видим искаженными из-за атмосферы.

Искусственные

Искусственные. К ним относятся разного рода лампы, лазеры и др. При освещении предмета обычной лампой накалывания он приобретает теплый желтоватый оттенок (вольфрамовая нить нагревается до желтого цвета). Использование люминесцентных ламп известно холодным свечением (светят преимущественно ультрафиолетом, а видимый спектр составляют фиолетовый, синий и зеленый цвета, а тепловое излучение очень мало). Галогенные лампы состоят тоже из вольфрамовой нити, пары галогенов, которые не находятся в вакууме (в отличие от устаревших лампочек Ильича). Цвета при таком освещении становятся ярче и сочнее, жизнерадостнее.

Лазер

Самым полезным штучным источником света является лазер. В лазерной трубке под воздействием электричества из атомов высвобождаются фотоны. Они вылетают из нее в виде узкого луча света или в какой-нибудь другой форме электромагнитного излучения. Оно зависит от вещества, которое используется для получения фотонов.

К атегория: Малярные работы

Свет и цвет в природе

Возможность разложения света была впервые обнаружена Исааком Ньютоном. Узкий луч света, пропущенный им через стеклянную призму, преломился и образовал на стене разноцветную полоску - спектр.

По цветовым признакам спектр можно разделить на две части. В одну часть входят красные, оранжевые, желтые и желто-зеленые цвета, а в другую - зеленые, голубые, синие и фиолетовые.

Длина волн лучей видимого спектра различна и лежит приблизительно в пределах от 380 до 760 нм(ммк). За прёделамп видимой части спектра располагается невидимая его часть. Участки спектра с длиной волны более 780 нм называются инфракрасными, или тепловыми. Они легко обнаруживаются термометром, установленным на этом участке спектра. Участки спектра с длиной волны менее 380 нм называются ультрафиолетовыми. Эти лучи химически активны; они разрушают несветопрочные пигменты и ускоряют старение лакокрасочных пленок.

Световые лучи, исходящие от различных источников света, имеют неодинаковый спектральный состав и поэтому значительно отличаются по цвету. Например, свет обычной электрической лампочки желтее солнечного света. Объясняется это тем, что в спектре луча дневного света преобладают волны, соответствующие синему цвету, в то время как в спектре электрической лампочки с вольфрамовой и особенно с угольной нитью преобладают красные и оранжевые цветовые волны. Поэтому один и тот же предмет может принимать различную окраску в зависимости от того, каким источником света он освещен.

Вследствие этого и окраска комнаты и предметов, находящихся в ней, воспринимается нами при естественном и искусственном освещении с различными цветовыми оттенками.

Поэтому, подбирая красочные составы для окраски, необходимо учитывать условия освещения во время эксплуатации.

Цвет каждого предмета зависит от его физических свойств, т. е. способности отражать, поглощать или пропускать лучи света. Лучи света, падающие на поверхность, делятся на отраженные, поглощенные и пропущенные.

Тела, почти полностью отражающие или поглощающие лучи света, воспринимаются нами как непрозрачные, а тела, пропускающие значительное количество света, - как прозрачные (стекло).

Если поверхность или тело отражает или пропускает в одинаковой степени все лучи видимой части спектра, то такое отражение или пропускание светового потока называется неизбирательным.

Так, предмет кажется черным, если он поглощает в равной степени почти все лучи спектра, и белым, если отражает в равной степени почти все лучи спектра.

Если смотреть на предметы через бесцветное стекло, их цвет останется для нас прежним. Следовательно, бесцветное стекло почти полностью пропускает все цветовые лучи спектра, за исключением незначительного количества отраженного и поглощенного света, также состоящего из всех цветовых лучей спектра.

Если же заменить бесцветное стекло синим, то все предметы за стеклом покажутся синими (синее стекло пропускает в основном только синие лучи спектра, поглощая почти полностью лучи остальных цветов).

Цвет непрозрачных предметов также зависит от отражения и поглощения поверхностью волн различного спектрального состава. Так, предмет кажется синим, если он отражает только синие лучи, а все остальные поглощает; если же предмет отражает красные и поглощает все остальные лучи спектра, он воспринимается как красный, и т. д.

Такое пропускание и поглощение предметами лучей называется избирательным.

Ахроматические и хроматические тона. Существующие в природе цвета по цветовым свойствам можно разделить на две группы: ахроматические, или бесцветные, и хроматические, или цветные.

К ахроматическим тонам относятся белый, черный и целый ряд промежуточных серых тонов.

Группа хроматических цветовых тонов состоит из красных, оранжевых, желтых, зеленых, фиолетовых и бесчисленного множества промежуточных цветов.

Луч света от предметов, окрашенных в ахроматические тона, отражается, не претерпев каких-либо заметных изменений. Поэтому эти тона воспринимаются нами только как белые или черные с целым рядом промежуточных серых оттенков, которые в этом случае зависят исключительно от способности тела поглощать или отражать все лучи спектра. Чем больше света отражает предмет, тем он кажется белее, и чем большее количество света предмет поглощает, тем он кажется чернее.

В природе не существует материала, отражающего или поглощающего все 100% падающего на него света, поэтому нет ни идеально белого, ни идеально черного тона. Самый белый тон имеет порошок химически чистого сернокислого бария, спрессованный в плитку, который отражает 94% падающего на него света; цинковые белила несколько темнее сернокислого бария, свинцовые белила еще темнее и далее, по мере уменьшения белизны, располагаются: гипс, литопонные белила, писчая бумага высшего сорта, мел и т. д. Наиболее темной считается поверхность черного бархата, отражающего около 0,2% света. Таким образом, ахроматические тона отличаются один от другого только светлотой. Человеческий глаз различает около 300 ахроматических оттенков.

Хроматические цвета обладают тремя свойствами: цветовым тоном, светлотой и насыщенностью цвета.

Цветовым тоном называют такое свойство цвета, которое позволяет глазу человека воспринимать и определять красный, желтый, синий и другие спектральные цвета. Он определяется длиной волны. Цветовых тонов существует значительно больше, чем названий для них.

Основным, естественным рядом цветовых тонов является солнечный спектр, в котором цветовые тона располагаются так, что постепенно и непрерывно переходят один в другой; красный через оранжевый переходит в желтый, далее через светло-зеленый и темно-зеленый - в голубой, затем в синий и, наконец, в фиолетовый.

Светлота - это свойство цветной поверхности отражать большее или меньшее количество падающих лучей света. При большем отражении света мы воспринимаем цвет поверхности как светлый, при меньшем - как темный. Это свойство является общим для всех тонов, как хроматических, так и ахроматических, поэтому по светлоте можно сравнивать любые тона. К хроматическому цвету любой светлоты легко подобрать подобный ему по светлоте ахроматический тон.

Для практических целей при определении светлоты пользуются так называемой серой шкалой, которая состоит из набора выкрасок ахроматических тонов, постепенно переходящих от наиболее черного, темно-серого, серого и светло-серого к почти белому. Эти выкраски наклеены между отверстиями в картоне, против каждой выкраски обозначен коэффициент отражения данного тона. Шкалу накладывают на исследуемую поверхность и, сопоставляя ее с вы-краской, просматриваемой через отверстия шкалы, определяют светлоту.

Насыщенностью хроматического цвета называют степень отличия этого цвета от ахроматического серого, равного ему по светлоте.

Это свойство хроматических цветов можно представить яснее, прибавляя к какому-либо спектральному цвету, например желтому, немного серого, равного ему по светлоте. В этом случае цветовой тон не изменится, так как прибавляемый ахроматический тон не имеет цветового тона, не изменится и светлота цветового тона, так как добавляемый серый равен ему по светлоте. Но полученный желтый цвет будет заметно отличаться от первоначального-он посереет, станет менее желтым. Продолжая дальнейшее прибавление серого тона к желтому, получают ряд промежуточных желтых цветовых тонов, все более серых, вплоть до того, что желтый цвет будет едва заметным. Таким образом, при прибавлении к желтому цвету серого насыщенность желтого цвета непрерывно снижается до минимально возможного.

Предельно насыщенными, а следовательно, и чистыми являются цвета спектра. Остальные хроматические цвета тем насыщенней, чем чище и ближе к спектральным.

Снижение насыщенности цветовых тонов достигается прибавлением не только серого тона, но и любого ахроматического - от черного до белого. При прибавлении черного получают темно-зеленые, темно-синие, коричневые, а белого - розовые, бледно-зеленые, светло-голубые тона. При постепенном прибавлении белого одновременно с уменьшением насыщенности возрастает светлота.

Смешение цветов. Восприятие цветов, которые мы видим вокруг себя, вызывается действием на глаз сложного цветового потока, состоящего из световых волн различной длины. Но впечатление пестроты и многоцветности не создается, гак как глаз обладает свойством смешивать разнообразные цвета.

Для изучения законов смешивания цветов пользуются приборами и приемами, дающими возможность смешивать цвета в различной пропорции.

С помощью трех проекционных фонарей с лампами достаточной мощности и трех светофильтров - синего, зеленого и красного - можно получить различные смешанные цвета. Для этого перед объективом каждого фонаря устанавливают светофильтры и направляют цветовые пучки на белый экран. При попарном наложении цветовых пучков на один и тот же участок получают три разнообразных цвета: сочетание синего и зеленого дает голубое пятно, зеленого и красного - желтое, красного и синего - пурпурное. В центре, где все три цветовые пучка взаимно перекрываются, при соответствующей регулировке интенсивности световых пучков с помощью диафрагм или серых светофильтров можно получить белое пятно.

Простой прибор для смешивания цветов - это вертушка-юла. Два бумажных кружка разного цвета, надрезанные по радиусу и имеющие одинаковый диаметр, вставляют один в другой. При этом образуется двухцветный диск, в котором, перемещая кружки, можно изменять величину цветных секторов. Собранный диск надевают на ось вертушки и приводят в движение. От быстрого чередования цвет двух секторов сливается в один. Создается впечатление, что кружок одноцветный. В лабораторных условиях обычно пользуются вертушкой с электродвигателем, имеющим скорость вращения не менее 2000 об/мин.

С помощью вертушки можно смешать несколько цветов, совмещая одновременно соответствующее количество разноцветных дисков.

В практике широко применяют пространственное смешение цветов, которое основано на получении зрительного эффекта в результате смешения двух или более цветов, расположенных близко один к другому и рассматриваемых с достаточно большого расстояния.

На принципе пространственного смешения цветов построено применение в отделочных работах накатывания разноцветных рисунков по цветному фону, набрызг и т. п.

Описанные способы смешения цветов являются оптическими, так как цвета складываются или сливаются в один суммарный цвет на сетчатке нашего глаза. Этот вид смешения носит название слагательного, или аддитивного.

Но не всегда при смешении двух хроматических цветов получается смешанный хроматический цвет. В отдельных случаях, если один из хроматических цветов дополнить специально подобранным к нему другим хроматическим цветом и смешать их в строго определенной пропорции, может получиться ахроматический тон. Если при этом были использованы хроматические цвета, близкие по чистоте цветового тона к спектральным, получающийся новый цвет окажется белым или светло-серым. Если пропорциональность при смешении нарушена, цветовой тон окажется того цвета, которого было взято больше, причем насыщенность тона понизится.

Два хроматических цвета, образующих при смешении в определенной пропорции ахроматический тон, называются взаимно дополнительными цветами. Смешение дополнительных цветов никогда не может дать нового цветового тона. В природе существует множество пар взаимно дополнительных цветов, но для практических целей из основных пар дополнительных цветов создают цветовой круг из восьми цветов, в котором взаимно дополнительные цвета размещают на противоположных концах одного диаметра.

В этом круге красному цвету соответствует дополнительный голубовато-зеленый, оранжевому - голубой, желтому - синий, желто-зеленому- фиолетовый. Следует отметить, что в любой паре дополнительных цветов один всегда принадлежит к группе теплых, а другой - к группе холодных.

В зависимости от того, в пределах какого интервала расположены цветовые тона, их сочетания приобретают большую или меньшую гармонию. Наиболее гармоничны цветовые тона, расположенные в пределах больших и малых интервалов, наименее - в пределах средних интервалов (1/4 окружности).

Помимо слагательного существует вычитательное, или механическое, смешение цветов. Этот вид смешения в отличие от оптического состоит в механическом смешении красок непосредственно на палитре, красочных составов - в емкостях или же в нанесении двух красочных прозрачных слоев один на другой (лессировка).

При механическом смешении красок получается не оптическое сложение цветных лучей на сетчатке глаза, а наоборот, вычитание из белого луча, освещающего нашу цветную смесь, тех лучей, которые поглощаются цветными частицами красок. Так, при освещении белым лучом света предмета, окрашенного цветной смесью пигментов синего и желтого цвета, например берлинской лазурью и желтым кадмием, синие частицы берлинской лазури поглотят красные, оранжевые и желтые лучи, а желтые частицы кадмия - фиолетовые, синие и голубые. Непоглощенными останутся зеленые и близкие к ним голубовато-зеленые и желто-зеленые лучи, которые, отразившись от предмета, и будут восприняты сетчаткой нашего глаза.

Примером вычитательного смешения цветов может служить луч света, пропущенный через три стекла - желтого, голубого и пурпурного цветов, - поставленных одно за другим, и направленный на белый экран. В местах перекрытия двух стекол - пурпурного и желтого - получится красное пятно, желтого и голубого - зеленое, голубого и пурпурного - синее. В местах же одновременного перекрытия трех цветов появится черное пятно.

Количественная оценка цвета. Для цветового тона, чистоты цвета и отражения цветом света установлены количественные оценки.

Цветовой тон определяется длиной его волны и лежит в пределах от 380 до 780 нм. Условно цветовой тон обозначают греческой буквой к (ламбда).

Такое определение цвета можно изобразить графически в виде диаграммы, в свое время построенной Исааком Ньютоном. Диаграмма представляет собой окружность, по которой в спектральной последовательности расположены основные цвета спектра. Круг замыкается смешанным красно-фиолетовым (пурпурным) цветом. В центре круга помещается белый тон с Р = 0,0. От центра к основной окружности расположились на равном расстоянии пять кон-Центрических кругов с отметками, обозначающими чистоту спектральных цветов, - 0,2; 0,4; 0,6; 0,8. По радиусам, идущим от центра к части окружности, обозначающей тот или иной спектральный цвет, располагается этот же спектральный цвет, но с различной чистотой от белого до спектрально чистого. На рис. 55 точкой обозначено расположение на диаграмме светло-оранжевого цвета с длиной волны к = 600 нм и чистотой цвета Р = 0,4.

В настоящее время действует система графического определения цвета, построенная в прямоугольных координатах на основе трех основных цветов - красного, зеленого и синего.

Рис. 1. Схема цветового круга

Третья количественная оценка цвета - коэффициент отражения цветом света, который условно обозначается греческой буквой g (ро). Он всегда меньше единицы. Коэффициенты отражения окрашенных или облицованных различными материалами поверхностей оказывают огромное влияние на освещенность помещений и всегда принимаются во внимание при проектировании отделки зданий различного назначения. С увеличением чистоты цвета коэффициент отражения уменьшается, и наоборот, с потерей цветом чистоть! и приближением его к белому коэффициент отражения увеличивается.

Рабочим, занимающимся отделкой помещений, необходимо знать коэффициенты отражения света различными материалами, используемыми при окрасках, оклеивании обоями, облицовке поверхностей.

При окраске и облицовке поверхностей применяют цвета, отражающие свет в следующих процентах: потолки - 70-85; стены (верхняя часть) -60-80; стены (панели) -50-65; мебель и оборудование- 50-65; полы - 30-50. При этом матовые окраски и облицовки с диффузным (рассеянным) отражением света создают условия наиболее равномерного (без бликов) освещения, что обеспечивает нормальные условия для органов зрения.



- Свет и цвет в природе