В любой воде содержится незначительное количество ионов золота, которые в теории можно было бы выделить и собрать в более-менее полноценный слиток. Сделать это очень сложно. Однако бактерия, которую изучают микробиологи Канады, знает один природный трюк, позволяющий ей буквально жить на кусках драгоценного металла.

Ионы золота присутствуют в морской и водопроводной, канализационной воде, в отходах горнодобывающей промышленности. Их всего-то несколько частиц на триллион. Они легко реагируют с различными химическими веществами, из-за чего их достаточно сложно перевести в стабильную форму, характерную для отливающим красивым жёлтым светом слитков.

Впрочем, бактерия Delftia acidovorans знает, как превратить отдельные ионы в самородки. Для этого микроорганизм использует делфтибактин (delftibactin ) - вещество, заставляющее золото осаждаться из раствора. Бактерии таким образом создают себе безопасные условия жизни (ионы больше не угрожают их клеткам) и приятный золотой дом, о котором многие могли бы только мечтать.

В статье , вышедшей в журнале Nature Chemical Biology, учёные из университета Макмастера (McMaster University) сообщают, что им удалось определить, какие гены отвечают за процессы производства золота и впервые выделить так называемый делфтибактин. Если исследователи получат это вещество в достаточном количестве, то им, возможно, удастся осуществить мечту многих алхимиков древности − превратить воду в золото.

Тут, правда, стоит заметить, что воды понадобится очень много. Кроме того, вещество, создаваемое бактериями, с не меньшей охотой вытягивает из воды ионы железа. А это означает, что биологи на выходе могут получить самородки железа с примесью золота.

Как бы то ни было, достижение учёных Канады можно будет использовать для очистки сточных вод, которые, как известно, содержат чуть ли не всю таблицу Менделеева, и для выделения золота из отходов горнодобывающей промышленности. Делфтибактин также может пригодиться для создания катализаторов в виде золотых частиц, которые необходимы для ускорения многих химических реакций.

Добавим, что в выделении золота из воды подозревают ещё один вид бактерий, ныне исследуемый микробиологами из университета Аделаиды (University of Adelaide). Представителей вида Cupriavidus metallidurans учёные обнаружили в биоплёнках на самородках золота, которые были найдены на расстоянии нескольких тысяч километров друг от друга. Эти микроорганизмы накапливают инертные наночастицы золота внутри своих клеток, также избавляя себя от опасного, растворённого в окружающей воде золота.

Амальгамационный процесс и аппаратура для извлечения из морской воды золота в металлической форме были предложены еще в 1903 г.

Предварительно отфильтрованную морскую воду подавали насосом через трубку на дно конического воронкообразного сосуда, содержащего ртуть и разделенного перфорированными листами на множество секций (рис. 92). После приведения в контакт со ртутью, восходящий поток воды пропускали через сетку для улавливания тонкой пемзованной ртути, затем через перфорированные контактные листы и, наконец, через амальгамационный шлюз, расположенный в верхней части аппарата и предназначенный для полного улав-ливания амальгамированного золота из потока. Амальгаму обрабатывали общепринятыми методами (отжимка, отпарка и плавка).

Аналогичная аппаратура предложена Риттером1 и отличается тем, что тонкая ртуть и содержащееся в ней золото, миновавшие сетку, улавливаются в рифленом устройстве.

Ионная флотация

Как уже отмечалось выше (см. гл. IV), ионная флотация основана на способности некоторых гетерополярных соединений взаимодействовать с ионами тяжелых металлов, и в частности золота, с образованием флотируемого нерастворимого соединения. Наиболее известны в этом направлении работы, применительно к морской воде Себба (ЮАР) 189 J.

Сорбция

Одним из первых сорбентов для извлечения золота из морской воды были опробованы углеродсодержащие материалы. Так, в начале XX века Паркер установил, что вязкие углеродсодержащие материалы, такие как асфальт, битум, минеральная смола и другие имеют сродство к свободному золоту. На этом основании Паркер предложил улавливать тонкодисперсное (или, так называемое, плавучее) золото из морской воды путем избирательного его закрепления на твердых вязких углеродсодержащих постелях, нанесенных на бруски и планки, установленные в потоке. Обеспечение непрерывного контакта свежей воды с вязким материалом должно осуществляться действием приливов и отливов моря .

Однако большинство исследователей считает, что из числа углеродсодержащих сорбентов наиболее интересны для сорбции золота из морской воды активированные угли.

Пионеры этого направления - немецкие исследователи Нагель и Баур (1912-1913 гг.), предложили для сорбции золота из морской воды использовать кокс, древесный и животный уголь и некоторые другие адсорбенты. В проведенных экспериментах морскую воду после предварительного осветления с использованием песочного фильтра (для удаления суспензированного материала и желатинистых микроорганизмов) пропускали через фильтрующую постель кокса, угля или другого углеродсодержащего материала по методу свободной перколяции или восходящей фильтрации (рис. 93). Обогащенный адсорбент периодически удаляли и проплавляли.

Для снижения затрат на перекачку морской воды предложено использовать перфорированные контейнеры с постелью адсорбента на борту судна, или береговые чаны с ложным днищем и слоем адсорбента, покрытого проволочной или тканевой сеткой, заполняемые действием приливов.

Параллельно с использованием классического адсорбента (активных углей) проводили исследования с неорганическими сорбентами с сильно развитой поверхностью, типа свежеосажденных гидроокисей (алюминия, железа, силикагеля), коагулированной гидроцеллюлозы и др. В этом случае предложено использовать береговые чаны или специальные подставки, заполненные неорганическим сорбентом и покрытые полностью двойным слоем волокнистого текстильного материала. Подставки погружают в морскую воду на недели, а нередко и месяцы, после чего на них действуют цианистыми растворами для извлечения.адсорбированного золота. Обеззолоченные подставки используют многократно.

При исследовании возможных сорбционных методов было установлено, что в этом процессе предпочтительнее извлекается коллоидное металлическое золото. Поэтому естественно стали искать такой сорбент, который одновременно бы восстанавливал галогенное золото до металлического состояния и создавал свежеобразованную активную поверхность. Исследуя обширный ряд подобных возможных сорбентов, Паркер пришел к выводу, что для наиболее полного извлечения золота из морской воды предпочтителен сульфат двухвалентного железа, оптимальный расход которого составляет 2 кг/т воды.

Впоследствии Паркер получил отдельный патент2 на аппаратурное оформление адсорбционного метода с использованием сульфита двухвалентного железа.

Совмещение процессов восстановления галоидного и адсорбции коллоидного золота наблюдается и в предложениях других исследователей. Так, Бардт рекомендовал обрабатывать морскую воду сульфитным щелоком (отходом производства целлюлозы) в качестве восстановителя с последующим перемешиванием ее со смесью тонко-размолотого угля и распыленного металла (например меди, железа и др.) 3. Осадок, содержащий благородные металлы, сначала сжигали (для удаления углерода), а затем плавили с коллектированием золота в сопутствующем металле.

Подобную же це,ль (восстановление галоидного и полное улавливание коллоидного золота) преследовал Глазунов с сотрудниками (Париж, 1928 г.), предлагая применять в качестве адсорбента для золота, растворенного в морской воде, сульфиды, и в частности, пириты .

Эта идея была практически реализована только в 1953 г. Валь-терсом и Стиллменом, пошедшими своим оригинальным путем. По их предложению, сульфидную руду укладывали в кучу за бетонной стенкой, построенной около нижней приливной линии и имеющей закругление к берегу. Во время прилива руда затапливалась водой, а при отливе вода перколировала через руду. Этот цикл повторялся многократно. Через определенное время шлам разложившихся сульфидов, содержащий адсорбированное золото, извлекали во время отлива и плавили. Изобретатели отметили, что осаждение золота сульфидами облегчается при воздействии на морскую воду радиоактивных элементов.

Позднее Стокс показал, что для осаждения золота из морской воды можно применять самые различные сульфидные природные и искусственные материалы, причем весьма эффективен сульфид сурьмы.

Для интенсификации процесса сорбции золота сульфидами, при одновременном устранении затрат на перекачку морской воды, Гер-ник и Стокс предложили специальный аппарат г, называемый в литературе «сурьмяно-сульфидной ловушкой» (так как он был задуман для использования в качестве адсорбента, сульфида сурьмы) или «приливно-энергетической системой». Аппарат этот выполнен в виде перевернутой U-образной трубы, в одном колене которой предусмотрено расширение, в которое между сетками помещают адсорбент (активированный уголь или сульфиды). Через эту трубку протекает морская вода под действием приливного течения или при движении судна, за которым закреплен описываемый аппарат.

На протяжении последних 10-15 лет появился целый ряд патентов, усовершенствующих сорбционное извлечение золота из морской воды с помощью сульфидов металлов 2. Наиболее оригинальная идея и аппаратура в этом направлении изложены американским исследователем Норрисом 3.

Его последнее изобретение основано на использовании свеже-осажденных коллоидов сульфидов металлов, адсорбированных на поверхности прочных органических, синтетических или натуральных волокон. Типичный пример синтезированных органических волокон- полимеризованные акрилнитриловые или винилцианидные волокна. Из натуральных волокон наиболее подходяще Волокно Рами (Китайская крапива). Такие волокна, если их погрузить в тонкую коллоидную суспензию (например, свежеосажденного сульфида цинка, приготовленного смешиванием разбавленных растворов хлористого цинка и сернистого натрия при значении pH приблизительно 6,0), будут активно адсорбировать, значительную часть коллоидных частиц сульфида и прочно удерживать на своей поверхности.

При контакте приготовленных таким образом сорбционных волокон с бедными золотосодержащими растворами (например, морской водой) ионы благородных металлов адсорбируются. Их можно снять с волокон обработкой нагретыми разбавленными растворами цианистого натрия с небольшой добавкой перекиси водорода или гипохлорита натрия с небольшой добавкой соляной кислоты. После элюации адсорбированных ионов волокна можно промыть и повторно неоднократно использовать после предварительной обработки суспензией сульфида цинка. Кроме сульфида цинка в этом процессе могут быть использованы сульфиды железа, марганца, меди, никеля и свинца.

Длительными исследованиями Норриса установлено, что некоторые окисляющие газы, которые часто растворены в большинстве морских вод, могут вредно влиять на применяемые коллекторы и адсорбционные волокна. К числу таких газов относятся кислород, азот и двуокись углерода. Поэтому для достижения наибольшего эффекта предлагаемая аппаратура должна иметь средства непрерывного удаления таких газов из текущей морской воды перед тем, как она войдет в контакт с коллектирующей структурой волокон- Кроме того, из-за сравнительно небольшого количества ионов металлов, которые коллектируются в одной нормальной операции, а также трудоемкости обработки и обращения массы волокна, желательно все операции выполнять непрерывно и автоматически. Все эти факторы были учтены в аппарате, предложенном Норрисом (рис. 94).

Особый интерес у исследователей вызывает использование естественных и искусственных ионообменников для извлечения золота и серебра из морской воды.

Приоритет в этом направлении принадлежит Бруку, который в 1953 г. предложил для извлечения серебра из морской воды применять цеолиты железа и марганца

Позднее, в 1964 г., Байер с сотрудниками (ФРГ) создал так называемые хелатные ионообменные смолы, способные извлекать из морской воды до 100% ценных металлов.

Из работ самого последнего времени, посвященных использованию твердых ионообменников для извлечения золота из морской воды, наиболее интересно исследование группы экспериментаторов Компании исследований и развития Гуффа (США).

Для коллектирования благородных металлов предложено использовать воднонерастворимый этиленовый полимер, содержащий висячие карбоксилатные или амидные группы. Один из лучших способов получения указанного полимера - омыление этиленоалкильного акрилатного сополимера или синтезирование сополимера этилена и эфира кислых групп, включающих малеиновую, фумаровую и таконовую кислоты. Детально получение таких сорбентов описано в патенте.

По достижении достаточной степени нагруженности полимерной пленки, сорбированное золото можно извлечь плавкой из золы после сожжения полимера или осадить из растворов от растворения полимеров в каустической соде (едком натре).

Пути использования естественных и искусственных ионообмен-ников в основном те же, что и рассмотренных выше сорбентов, а именно: установка в потоке морской воды, фильтрация через постель в чане, загрузка пористых контейнеров.

Мерро предложил совершенно новый путь использования искусственных ионитов - нанесение их на корпус судна, совершающего свой коммерческий рейс. По прибытии в порт назначения ионообменную смолу можно сдирать с судна и подвергать обработке. Обработка смолы заключается в промывке кислотами и специальными элементами с последующим электролизом элюата, содержащего благородные металлы. Регенерированные смолы можно использовать неоднократно.

Наиболее экономично предложение использовать специальные приспособления, находящиеся в трюме судна и заполненные ионообменными смолами . Здесь предусмотрено, что движение судна вперед заставляет непрерывно протекать морскую воду через сосуд с ионитом. Этот сосуд должен иметь площадь поперечного сечения около 9,5-10 м2, длину 3 м и содержать около 28 м3 смолы. Максимальная скорость протока морской воды при сорбции на смолу должна составлять -0,8 м3 через 1 м2 поверхности в минуту (0,8 м/мин).

При такой скорости потока через сорбционное устройство в сутки пройдет -12 500 т морской воды. При содержании в воде даже

1 мг!т золота в сутки извлечется 12,5 г золота. В течение года непрерывного плавания может быть адсорбировано около 4,5 кг золота на сумму около 5000 долл.

Цементация

Одно из немногочисленных сведений о практическом применении способа цементации золота из морской воды относится к запатентованному в США методу Паркера. В качестве металла-цементатора предложена никелевая пыль. Восстановлением, замещением и адсорбцией можно выделить из морской воды золото, присутствующее как в галогенной, так и элементарной форме.

При проведении цементации перемешиванием никелевого порошка с морской водой можно достигнуть нагруженности его по золоту от 15 до 20% по массе. Нагруженный никелевый порошок удаляют из чана и плавят.

Для осаждения золота из весьма бедных морских вод, Снеминг предложил использовать повышенное сродство золота к теллуру. Установлено, что наиболее целесообразно проводить осаждение аморфным теллуром с весьма развитой реакционной поверхностью. Такой цементатор получается при обработке растворимой соли теллура двуокисью серы. Морская вода фильтруется через неподвижный слой аморфного теллура. Для извлечения высаженного золота обогащенную массу нагревают для возгонки теллура (с последующим его улавливанием), а остаток плавят на золото.

Несмотря на то что ныне известно не менее 60 растворенных в морской воде элементов, в промышленных масштабах извлекается всего лишь четыре. Это натрий, хлор (обычная поваренная соль), магний и некоторые его соединения, а также бром. В качестве побочных отходов в процессе получения поваренной соли или при извлечении магния добывают некоторые соединения кальция и калия. Обычно эти продукты получают либо в результате экстракции из морской воды, либо при переработке водорослей, концентрирующих кальций и калий. Следует, однако, отметить, что промышленное извлечение перечисленных элементов непосредственно из морской воды все еще не освоено. Предпринимались многочисленные попытки экстрагировать другие минеральные соединения из морской воды, однако промышленная добыча оказалась безуспешной. Запатентовано также немало способов извлечения из морской воды поваренной соли, магния и его соединений, брома, йода, калия, сульфата кальция, золота и серебра (Baudin, 1916; Cernik, 1926; Niccali, 1925; S. О. Petterson, 1928; Vienne, 1949).

Извлечение поваренной соли

Систематическое получение соли из морской воды было начато в Китае намного раньше 2200 г. до н. э. Веками многие народы были зависимы от моря как источника соли (Armstrong, Miall,1946). И сейчас соль, добываемая из морской воды простым выпариванием солнечными лучами, занимает значительную долю в общем балансе потребления соли такими странами, как Китай, Индия, Япония, Турция и Филиппины. Ежегодно во всем мире производится около 6 млн. т соли. Как правило, для производства соли выпариванием из морской воды необходим жаркий климат с сухими ветрами. Однако помимо близости моря и жаркого климата требуется соблюдение еще ряда условий: слабая водопроницаемость грунта испарительных бассейнов, наличие обширных низменных площадей, лежащих ниже уровня моря или затопляемых морскими приливами, малое количество осадков в течение месяцев активного испарения, отсутствие разбавляющего влияния речных пресных вод и, наконец, в связи с низкой стоимостью добычи соли - наличие дешевых транспортных средств либо близость рынков сбыта.

Около 5% всей соли, потребляемой Соединенными Штатами, производится испарением, преимущественно в районе залива Сан-Франциско, где этот промысел был начат еще в 1852 г. На рис. 5 показаны искусственные испарительные бассейны близ южной конечности залива Сан-Франциско. Здесь с общей площади около 80 кв. миль "Лесли салт компани" ежегодно добывает примерно 1,2 млн. т соли. Аналогичные соляные промыслы находятся также в верховьях заливов Ньюпорт и Сан-Диего в Южной Калифорнии; их годовая производительность составляет 100 тыс. т (Emery, 1960). Пуск морской воды в испарительные бассейны близ залива Сан-Франциско осуществляется в период полной воды через шлюзные ворота в дамбе, ограждающей бассейн от моря. Морская вода выдерживается здесь до тех пор, пока значительная ее часть не испарится и не наступит садка заключенных в ней солей.


Рис. 6. Механические скреперы используются для снятия верхнего слоя закристаллизовавшейся соли. К моменту "уборки соляного урожая" мощность слоя соли обычно достигает 4-6 дюймов.

Сульфат кальция кристаллизуется из раствора одним из первых. После осаждения на дно солей сульфата кальция оставшаяся рапа осторожно переводится в садочный бассейн, где вследствие испарения происходит дальнейшее сгущение раствора до начала осаждения хлорида натрия. Выпаривание рапы продолжается до момента достижения ею удельного веса около 1,28, то есть до начала садки солей магния. На этом этапе соляной раствор носит название горького маточного рассола. Рассол извлекают из садочного бассейна и переправляют на другие предприятия, где из него получают различные соединения магния, бром и другие соли. После удаления рассола в садочный бассейн вновь заливают свежую рапу и весь цикл получения хлорида натрия повторяется. К 1 августа на дне таких бассейнов накапливается слой хлорида натрия толщиной 4-6 дюймов. Выборка соли производится при помощи механических скреперов и погрузчиков (рис. 6); затем соль отмывается от различных примесей морской водой и складируется в виде больших конусообразных насыпей (рис. 7). Соль, идущая для промышленного использования, в большинстве случаев не подвергается дальнейшей очистке. Однако ее дополнительно очищают, если она предназначается для пищевого потребления населением. Содержание NaCl в рафинированном продукте превышает 99,9%. Стоимость соли, полученной путем свободного испарения морской воды под воздействием солнца, колеблется в США от 10 долл. за 1 т сырого продукта близ места добычи до 150 долл. за 1 т очищенной и расфасованной поваренной соли.

Схема добычи соли из морской воды примерно одинакова во всем мире, тем не менее в ряде стран дешевая рабочая сила позволяет видоизменять этот процесс.

В странах иного климата, например в Швеции и в Советском Союзе, соль получают путем вымораживания морской воды. Рассольный лед, состоящий из почти чистой воды, отфильтровывается от остаточного рассола, на котором затем производится ряд последовательных операций по его вымораживанию, прежде чем концентрация остаточных его порций станет достаточно высокой, чтобы начать выпаривание досуха под действием искусственного нагрева (Armstrong, Miall, 1946).

Концентрированная рапа, оставшаяся после отделения хлорида натрия, подвергается дальнейшей специальной обработке с целью извлечения имеющихся в них соединений. Так, добавление в раствор хлорида кальция вызывает садку сульфата кальция (гипса), который затем поступает в продажу. При дальнейшем концентрировании рассола в осадок выпадают сульфаты магния, калия и другие соли. В заключительных стадиях процесса из остаточного раствора извлекается хлорид магния и бром.

Экстракция брома из морской воды

Бром можно рассматривать как почти морской элемент, поскольку в океане находится 99% всего содержания брома в земной коре (см. табл. 2). Бром был открыт в 1825 г. французским исследователем А. Ж. Балардом в концентрированных растворах, полученных после осаждения соли из воды соленых маршей близ Монпеллье. Позднее бром был обнаружен в составе калийных залежей Страсфурта и в рассолах из буровых скважин Мичигана, Огайо и Западной Виргинии. Из морской воды бром был впервые выделен в 1926 г. в Калифорнии при обработке маточных рассолов, получаемых в процессе извлечения соли в искусственных испарительных бассейнах. Потребление брома промышленностью было сравнительно ограниченным до начала производства высококомпрессионных двигателей внутреннего сгорания, так что спрос рынка удовлетворялся теми количествами, которые добывались из скважинных рассолов и соляных залежей. Но затем положение резко изменилось. В бензин с антидетонационными свойствами, содержащий присадку тетраэтилсвинца, стали добавлять этилендибромид, чтобы предотвратить отложение свинца на стенках цилиндров, клапанах, поршнях и на свечах. При столь возросших потребностях в броме рассолов, выкачиваемых из буровых скважин, оказалось недостаточно. Не удовлетворяла спрос и добыча брома как побочного продукта при производстве соли. Возникла острая необходимость в ином источнике брома.

В ходе широких поисков дополнительных источников брома "Этил корпорейшн" разработала процесс прямого осаждения брома непосредственно из морской воды, которая не подвергалась предварительному концентрированию. Согласно этой схеме бром осаждается в виде нерастворимого соединения - триброманилина - при обработке морской воды анилином и хлором. Во избежание гидролиза хлора морская вода предварительно подкисляется серной кислотой. Позднее этот процесс расширили до масштабов промышленного производства. Установка была смонтирована на судне, которое затем было переоборудовано в завод по извлечению брома. Работая 25 дней в месяц, такой плавучий завод производит около 75 тыс. фунтов брома. За этот же срок заводом потребляется реагентов: 250 т концентрированной серной кислоты, 25 т анилина, 66 т хлора, хранимых между верхней и нижней палубами. Эффективность извлечения брома из морской воды, где его содержится всего 0,1 фунта на 1 т, равна примерно 70%. На судне предусмотрены защитные меры, предпринимаемые для того, чтобы избежать разбавления морской воды отработанными водами, сливаемыми после завершения технологического процесса. Позднее было установлено, что для предотвращения смешения можно с успехом использовать вдольбереговые морские течения, существующие у многих побережий. В настоящий момент считают, что с технической точки зрения процесс извлечения брома на борту плавучего завода решен успешно, однако работа в открытом море с весьма коррозионно-активными реагентами гораздо сложнее, чем на суше.

Выбор места для постройки завода по извлечению брома следует производить с особой тщательностью. При этом необходимо заранее исключить возможности разбавления потребляемых заводом морских вод дождевыми осадками, сточными водами, а также водами, из которых бром уже извлечен. Кроме того, морская вода должна иметь высокую и постоянную соленость, относительно высокую температуру и не должна быть загрязнена органическими отбросами, на которые бесполезно расходуется хлор. Такое место, удовлетворяющее всем перечисленным требованиям, было найдено близ Кьюр-Бич (Северная Каролина). Здесь "Этил дау кемикл компани" построила завод производительностью 3 тыс. т брома в год. В 1938 г. мощность этого предприятия была увеличена до 20 тыс. т брома в год (Shigley, 1951).

Другой завод подобного типа построен близ Фрипорта, где условия для извлечения брома из морской воды в большей мере отвечают всем технологическим требованиям, чем около Кьюр-Бича. Проектная мощность этого завода 15 тыс. т брома в год. В 1943 г. там же был сооружен еще один завод равной мощности. Предприятие же близ Кьюр-Бича в конце второй мировой войны было закрыто. Таким образом, заводы Фрипорта производят в настоящее время около 80% потребляемых за год Соединенными Штатами количеств брома. На рис. 8 приводится схема технологического процесса извлечения брома "Этил дау кемикл компани".

На заводе Кьюр-Бича, согласно ранее разработанной технологии, смесь морской воды с кислотой и хлором заливалась в верхнюю часть кирпичной башни с встроенными внутри нее деревянными решетками. Растворенный в морской воде бром восстанавливался хлором до относительно летучего элементарного брома, а присутствующая в смеси кислота препятствовала гидролизу хлора. По мере того как смесь морской воды с бромом стекала из верхних частей башни, производилась продувка воздуха снизу вверх. Проходящий воздух выносил свободный бром из морской воды и переносил его в абсорбционную башню, заполненную кальцинированной содой, после чего уже не содержащая брома морская вода сливалась обратно в море. Насыщенный бромом раствор кальцинированной соды обрабатывался серной кислотой с целью перевода броматов и бромидов натрия в свободный бром. Затем смесь закачивалась в испарительную колонку, где производилась отгонка и вторичная конденсация брома в стеклянные или керамические сосуды. Дальнейшая очистка брома путем дистилляции позволяла получать в конечном итоге продукт с содержанием брома до 99,7%.

В 1937 г. этот процесс был несколько модифицирован. Так, при первичной отгонке брома в качестве переносящих агентов использовались сернистый ангидрид и воздух. В результате бром высвобождался в форме бромистоводородной кислоты, что позволяло существенно улучшить его последующую очистку. И хотя эффективность извлечения брома в обоих процессах превышает 90%, в настоящее время в США почти исключительно применяется процесс прямой экстракции брома из морской воды с использованием сернистого ангидрида (Shigley, 1951).

Извлечение магния из морской воды

Магний является самым легким из применяющихся в строительстве металлов. Его удельный вес 1,74, тогда как у алюминия он равен 2,70, а у железа - 7,87. Наиболее широкое применение этот металл, находит в строительстве транспортных средств. Кроме того магний используется как компонент сплавов с алюминием, в системах анодных и катодных защитных покрытий, в импульсных фотолампах и во многих других областях техники. К 1964 г. ежегодное мировое производство магния составляло около 150 тыс. т.

В морской воде содержится примерно 0,13% магния. И несмотря на то что такая концентрация составляет всего лишь 1/300 того количества, которое содержится в магниевой руде, добываемой на суше, для Соединенных Штатов главным источником этого металла является морская вода. Впервые магний был получен из морской воды в Англии (Armstrong, Miall, 1946), однако первое крупное предприятие по извлечению магния из морской воды было сооружено близ Фрипорта в начале 1941 г. "Этил дау кемикл компани". До этого времени магний в США получали из скважинных рассолов и из магнезитовых месторождений.

Выбор места для постройки завода близ Фрипорта был продиктован следующими весьма благоприятными обстоятельствами. Наличие дешевого природного газа позволяет эффективно его использовать для получения тепла и электроэнергии. Географическое местоположение завода дает возможность сливать сточные, отработанные воды обратно в Мексиканский залив, с крайне ничтожной возможностью разбавления ими потребляемых морских вод. Очень дешевую известь можно получать из известковых раковин, добываемых со дна Мексиканского залива, всего в нескольких милях от магниевого завода. На рис. 9 показана технологическая схема извлечения магния на заводе близ Фрипорта, а один из участков этого завода изображен на рис. 10.


Рис. 10. Общий вид магнийперерабатывающей установки на заводе "Этил дау кемикл компани", Фрипорт (Тexac). На переднем плане видны загустители Дорра, в которые смесь морская вода - известь перекачивается с целью ускорить выпадение в осадок хлористого магния.

Морская вода поступает на предприятие со скоростью около 1 млн. галлонов в час через подводные шлюзовые ворота канала, соединенного с Мексиканским заливом. Преимущество такой системы снабжения состоит в том, что нижние слои воды обладают значительно более высокой соленостью, чем поверхностные воды в районе завода. В искусственном бассейне вода непрерывно обрабатывается известковым молоком (выше упоминалось, что известь получают путем прокаливания устричных раковин). В результате реакции известкового молока с соединениями магния образуется жидкий илоподобный осадок нерастворимой гидроокиси магния, который затем перекачивается в отстойники. Осадок составляет примерно 2% общего объема морской воды, расходуемого в этом производстве, иными словами, уже на первой стадии технологического процесса осуществляется 100-кратное концентрирование полезного компонента. Отработанные воды спускаются в реку Брасос, впадающую в Мексиканский залив на значительном удалении от завода.

Отфильтрованную гидроокись магния растворяют в соляной кислоте. Полученный раствор хлорида магния концентрируют выпариванием, для того чтобы частично избавиться от захваченных из морской воды солей. Кальций осаждается в виде нерастворимого сульфата или гипса добавлением к раствору сульфата магния, после этого раствор снова фильтруют, чтобы отделить гипс и другие соли, и затем концентрируют выпариванием. Когда концентрация хлорида магния достигнет примерно 50%, а температура раствора поднимется приблизительно до 170°, его распыляют на предварительно высушенный твердый MgCl 2 . Растворитель мгновенно превращается в пар, а хлорид магния при этом осаждается. Высушенный твердый осадок затем помещают в электролитическую камеру, где он разлагается до металлического магния и газообразного хлора. Хлор преобразуется в соляную кислоту, которую успешно используют в последующих циклах процесса. Металлический магний отчерпывается из электролитической камеры и формируется в виде болванок. Содержание металла в них превышает 99,8% (Shigley, 1951).

Общая потребность США в сыром, первичном металлическом магнии уже со времени конца второй мировой войны удовлетворялась за счет производства его из морской воды. Во время войны правительство США построило ряд заводов, которые использовали в качестве сырья для производства магния магнезит, доломит, откачиваемые из скважин рассолы и морскую воду. Однако к концу войны ни один из этих заводов не мог выдержать конкуренции с предприятиями, извлекающими магний из морской воды, и это несмотря на то, что первым заводам правительство гарантировало полный сбыт продукции, тогда как предприятия, работавшие на морской воде, таких гарантий не имели.

Выбор участка для постройки магниевого завода определяется не столь жесткими требованиями, нежели завода, получающего бром из морской воды. Исключение, правда, составляет тот случай, когда извлечения брома и магния производятся совместно. Так, в процессе экстрагирования магния температура морской воды не имеет серьезного значения, менее важен и расход сырья: на производство 1 фунта элементарного магния расходуется всего лишь 5% тех количеств морской воды, которые используются при экстракции брома. Самыми важными факторами, диктующими целесообразность выбора места для завода, являются близость источников дешевой извести, топлива и электроэнергии. Эффективность процесса извлечения магния из морской воды составляет 85-90%. И хотя современные технологические возможности позволяют значительно полнее экстрагировать магний из морской воды, экономически это невыгодно, так как подсчитано, что увеличение коэффициента извлечения более 90% сопровождается резким возрастанием капитальных затрат на каждый процент прироста.

Одно из достоинств, присущих рассматриваемому процессу, состоит в том, что низкая стоимость сырья может быть еще более уменьшена, если эти материалы подавать непосредственно в технологическую линию путем их перекачки. Такая механизированная подача позволяет сделать производственный процесс в значительной мере непрерывным и установить приборы автоматического контроля. Кроме того, положительная особенность завода такого типа состоит в чрезвычайном единообразии потребляемого им сырья.

Магниевые соединения

Магний в форме MgO, Mg(OH) 2 и MgCl 2 находит широкое применение в самых различных областях промышленности. Его используют как огнеупорный материал для внутренних покрытий в плавильных печах, как сырье для фармацевтического производства, в изоляторах, при производстве удобрений, искусственного шелка и бумаги и многого другого. Многие компании мира получают соединения магния из морской воды; в частности это характерно для Англии и США. Впервые промышленное извлечение магниевых соединений из морской воды проводилось как побочный процесс из остаточных рассолов при получении поваренной соли (Seaton, 1931; Manning 1936, 1938).


Рис. 11. Последовательность процесса на магниевом заводе компании "Кайзер алуминум эид кемикл" близ Мосс-Лендинга (Калифорния).

Схема процесса извлечения магниевых соединений из морской воды изображена на рис. 11. Такую технологическую схему применяют на своих предприятиях компании "Кайзер алуминум энд кемикл корпорейшн" близ Мосс-Лендинга (Калифорния). Морская вода смешивается с прокаленным доломитом. Происходит осаждение гидроокиси магния, которая затем отстаивается в больших концентрационных емкостях. После отстаивания гидроокись магния извлекается, промывается для удаления растворимых примесей и фильтруется с целью уменьшить содержание воды примерно до 50%. Часть полученной таким образом гидроокиси магния поступает в продажу в виде гомогенизированного осадка на фильтре, оформленного как брикеты. Эта продукция используется при производстве бумаги и магнезиальной изоляции. Оставшаяся на фильтре часть осадка затем вновь прокаливается до образования различных сортов MgO, которые могут быть использованы при получении искусственного шелка, резины, изоляционных покрытий, огнеупорных кирпичей. На рис. 12 показан завод компании "Кайзер" по производству магниевых соединений.


Рис. 12. Завод по извлечению магния из морской воды компании "Кайзер алуминум энд кемикл" близ Мосс-Леидинга (Калифорния) (снимок с самолета).

В США около 90% всего объема каустической кальцинированной окиси магния и около 50% огнеупорной магнезии получают из морской воды либо из рассолов, выкачиваемых из скважин.

Золото из морской воды

На разработку методов извлечения золота из морской воды потрачено так много сил и средств, что в этом отношении с ним трудно сравнивать какой-либо другой элемент. По вопросам, связанным с экстракцией золота из морской воды, было выдано много патентов, касающихся как самих методов, так и оборудования (Bardt, 1927; Baudin, 1916; Bauer, 1912; Cernik, 1926; Bitter, 1938; Stoces, 1925). В 1866 г. один из членов Французской Академии наук обнаружил присутствие ничтожных количеств золота в морской воде. А позднее, в 1886 г., было сообщено, что содержание золота в водах Ла-Манша составляет до 65 мг на 1 т воды.

В начале этого столетия Сванте Аррениус указал, что прежние определения содержания золота в морской воде были преувеличены, по крайней мере, в 10 раз. Но, тем не менее, расчеты самого Аррениуса показали, что минимальное содержание золота в морской воде не ниже 6 мг на 1 т. По этим расчетам, в Мировом океане заключено примерно 8 млрд. т золота. Такого количества золота вполне достаточно, чтобы сделать каждого человека на земле миллионером. Но, несмотря на многочисленные патенты и проекты, до сих пор из морской воды не получено еще никаких практически ощутимых количеств этого металла.

В конце первой мировой войны блестящий немецкий химик, лауреат Нобелевской премии доктор Фриц Хабер утверждал, что военный долг Германии можно оплатить золотом, извлеченным из моря. Считая, что концентрация золота составляет 5-10 мг на 1 т морской воды, Хабер укомплектовал исследовательское судно соответствующим персоналом и оборудованием для изучения наиболее высоких содержаний золота в океанах. Однако к своему большому огорчению, Хабер установил, что концентрации золота редко превышают 0,001 мг на 1 т воды (Haber, 1927). Самое высокое содержание золота отмечается в Южной Атлантике и составляет 0,044 мг на 1 т. Даже в заливе Сан-Франциско, куда впадают реки, дренирующие золотоносные районы, концентрация золота не намного превосходит среднее содержание этого элемента в открытом океане. После 10 лет, посвященных работе над этой проблемой, Хабер пришел к заключению, что извлечение золота из морской воды невыгодно. В настоящее время установлено, что полученные Хабером значения содержаний золота в морской воде являются несколько неточными, поскольку он не учитывал, очевидно, присутствия золота в химикалиях и в реакционных сосудах, которыми он пользовался во время анализов.

Методы экстракции золота из морской воды основаны на использовании сульфидных частиц, которые обладают большим сродством к золоту. При прохождении морской воды над этими частицами золото, как полагают, прилипает к поверхности сульфидов. Кроме того, в качестве материала для извлечения золота из морской воды предлагалась также ртуть.

Несмотря на множество попыток экстрагировать золото из морской воды, известен всего лишь один случай, когда были получены сколь-либо ощутимые количества этого металла. В связи с широко развернутыми работами на заводе по извлечению брома в Северной Каролине "Этил дау кемикл компани" проводила исследование возможностей экстракции других металлов, включая золото. В результате переработки 15 т морской воды удалось извлечь 0,09 мг золота, стоимость которого составляет примерно 0,0001 долл. На сегодня это ничтожное количество составляет все то золото, которое было извлечено из морской воды (Terry, 1964).

Другие вещества, извлекаемые из морской воды

Помимо обычной соли, брома, магния и его соединений, из морской воды иногда извлекается ряд других веществ. Они, как правило, являются побочными продуктами при производстве соли либо их получают через промежуточное посредничество некоторых растений или рыб.

Впервые йод был обнаружен в золе водорослей в 1811 г. французом Бернаром Куртуа, владельцем фабрики по производству селитры. В поисках подходящего сырья для получения щелочи он решил использовать для этой цели водоросли. Очищая реакционные сосуды, в которых находилась горячая концентрированная серная кислота, он обратил внимание на выделения испарений фиолетового цвета, из золы водорослей. Пары конденсировались на стенках более охлажденной части сосуда в виде темных металлоподобных кристаллов (Armstrong, Miall, 1946). Содержание йода в некоторых водорослях, в частности в Laminaria, оказалось равным примерно 0,5% в пересчете на воздушно-сухую основу. Концентрация же йода в морской воде равна приблизительно 0,05 мг/л, или около 0,000005%. Таким образом, в указанных видах водорослей происходит 100000-кратное концентрирование йода в сравнении с его содержанием в морской воде.

Вскоре после открытия Куртуа было установлено значение йода для медицины. Началось интенсивное развитие промышленности, главным образом в Северной Англии, по извлечению йода из морских водорослей. В 1846 г. в Глазго функционировало более 12 фабрик, экстрагирующих йод из морских водорослей. Однако обнаружение йода в чилийских залежах нитратов привело к упадку добычи йода из морских водорослей.

Примерно в то же время из морских водорослей извлекались значительные количества калиевых и натриевых солей. Технология этого процесса, по существу, была не разработана. Обычно проводилось простое выщелачивание водорослей водой и последующее выпаривание полученного раствора. Другой весьма распространенный метод получения солей состоял в том, что водоросли сжигались, а зола выщелачивалась водой. В результате этих примитивных процессов йод получался в виде соединений - йодидов калия либо натрия, которые при смешивании их с серной кислотой и двуокисью марганца восстанавливались до элементарного йода.

В истории использования водорослей выделяются три различных периода: а) первый - когда водоросли применялись как сырье для получения щелочи, б) второй - когда их использовали для извлечения йода и в) третий - когда из водорослей добывали поташ. Однако каждый из периодов заканчивался созданием более совершенных методов получения этих продуктов из более дешевого сырья, добываемого на суше. В настоящее время водоросли используются как сырье для получения натриевого альгината - органического соединения, применяемого в качестве желатинообразующего и эмульсиообразующего агентов при производстве продуктов питания. Крупные предприятия, перерабатывающие морские водоросли в качестве сырья для производства рассматриваемых химических соединений, размещены на побережье Южной Калифорнии. Во многих частях света, особенно на Востоке, водоросли широко используются как продукты питания. В некоторых приморских странах их применяют в качестве удобрений.

Добыча минеральных соединений при опреснении морских вод

В последние годы уделяется особое внимание проблеме опреснения морских вод. Как правило, концентрация солей в сбросных водах в этом случае во много раз превышает содержание этих солей в исходной морской воде. В ходе работ по извлечению минеральных соединений из таких рассолов получены весьма обнадеживающие результаты. Это относится к снижению расходов по перекачиванию вод, поступающих на перерабатывающий завод с относительно высокой температурой рассола и примерно в 4 раза повышенной концентрацией.

Если процесс опреснения морской воды окажется рентабельным, то количество минеральных соединений, которые можно было бы извлекать из сбросных вод, во много раз превысит ожидаемые потребности. Допустим, например, что в ближайшие несколько десятков лет население прибрежных областей достигнет примерно 100 млн. человек, которые будут ежегодно расходовать для бытовых и промышленных целей в среднем по 100 тыс. галлонов воды на душу населения. Такой темп потребления в конечном итоге может достичь величины примерно 1013 галлонов, или 10 куб. миль, воды в год. При поступлении этого объема воды из океана и эффективности извлечения пресной воды 25% через перерабатывающие опреснительные заводы будут проходить 6,4 млрд. т хлорида натрия, 240 млн. т магния, 160 млн. т серы, 800 тыс. т бора, 2 тыс. т алюминия, 400 т марганца, 560 т меди, 560 т урана, 2 тыс. т молибдена, 40 т серебра и около 1 т золота. Будем считать, что экономически выгодно добывать лишь 10% этих количеств и что население, для которого проводилось опреснение морской воды, способно потреблять эти минеральные компоненты. Тогда, основываясь на статистических данных, помещенных в табл. 3, можно сделать вывод, что темпы извлечения молибдена, бора и брома будут соответствовать их потреблению, в то время как производство других минеральных соединений будет значительно превышать потребность в этих веществах. Разумеется, нет никакой необходимости в извлечении всех солей. Целесообразно получать лишь те соли, которые пользуются сбытом. Во всяком случае, в связи с техническими трудностями маловероятно, чтобы в настоящее время проводилось промышленное извлечение какого-либо элемента, концентрация которого в морской воде ниже, чем бора. Заслуживают внимания, однако, следующие соображения. Если удалось бы извлечь из морской воды уран и торий, то использование этих элементов в реакторах бридерного типа дало бы тепловую энергию, необходимую для работы конверсионных заводов по производству пресной воды.

Таблица 3. Количества минеральных компонентов (в т), которые можно было бы извлечь из сбросных рассолов конверсионных заводов с производительностью 10 13 галлонов пресной воды в год
Элемент Годовая
продукция, т
Производство на душу
населения при общей
его численности 10 8
человек, т/год
Современное
потребление
в США на душу
населения,
т/год
Отношение
производства
к потреблению
NaCl 64*10 8 64 0,145 440
Магний 2,4*10 8 2,4 25*10 -4 10000
Сера 1,6*10 8 1,6 0,033 50
Калий 68*10 6 0,68 0,010 68
Бром 1,2*10 6 0,012 4,7*10 -4 25
Бор 0,8*10 6 0,008 5,5*10 -4 15
Алюминий 2000 2*10 -5 0,013 0,001
Марганец 400 4*10 -6 0,0033 0,001
Медь 560 7*10 -6 0,0067 0,001
Уран 560 5*10 -6 1,4*10 -4 0,04
Молибден 2000 2*10 -5 8,3*10 -5 24
Серебро 40 6*10 -7 3,0*10 -5 0,02
Никель 400 4*10 -6 0,001 0,004
Золото 1 2*10 -9 5,0*10 -6 0,0004

В настоящее время сконструированы крупные ядерные реакторы, которые могли бы обеспечить тепловой и электрической энергией конверсионные опреснительные установки (Hammond, 1962) Подсчитано, что стоимость производства пресной воды составляет примерно 0,15 долл. за 1000 галлонов, что успешно выдерживает сравнение со стоимостью воды, потребляемой в городском хозяйстве или для ирригационных целей в некоторых районах. Крупный завод с реакторной установкой может производить ежедневно около 109 галлонов пресной воды; этого количества должно хватить для удовлетворения бытовых и хозяйственных нужд города с 4-миллионным населением либо для орошения посевов площадью 500 кв. миль. Трудно ожидать, однако, чтобы такие заводы стали в ближайшие несколько десятков лет серьезными источниками снабжения пресной водой. Недостаточно аргументированным является также и предположение о будущем потреблении минеральных компонентов морской воды и о характере изменения цен и других расходов. Иными словами, статистические выкладки, помещенные в табл. 3, представляют лишь теоретическую ценность.

В 1866 г. один из членов Французской Академии наук обнаружил присутствие ничтожных количеств золота в морской воде. А позднее, в 1886 г., было сообщено, что содержание золота в водах Ла-Манша составляет до 65 мг на 1 т воды.

Известный шведский ученый Аррениус оценил это количество в 8 миллиардов тонн золота. Многие знали об этом сказочном сокровище, о золоте, присутствующем в виде малых примесей в морской воде. Весьма притягательной была мысль - попросту извлекать это золото из моря, а не добывать его тяжелым трудом, как обычно.

На стыке веков в Англии и США делались попытки экстрагировать золото из моря в промышленном масштабе. В 1908 году эту проблему пыталось разрешить акционерное общество под руководством Вильяма Рамзая. Вскоре в изобилии появились патенты по добыче золота из морской воды. Об удачах не было слышно. Все попытки заглохли в самом зародыше из-за очень малого содержания золота, а также присутствия многочисленных сопутствующих солей. Не было такого промышленного способа, который позволил бы отделить золото от сопутствующих веществ, то есть обогатить его и извлечь.

Физикохимик Габер, которому удалось азот воздуха превратить в аммиак, хотел теперь отважиться на попытку извлечь золото из моря.

В начале 1920 года Габер сообщил об этом в кругу своих ближайших сотрудников. В полной секретности совершались приготовления к этому большому начинанию, о котором остальной мир не должен был знать. Более трех лет до лета 1923 года, затратили Габер с сотрудниками, чтобы выяснить самые насущные проблемы: аналитически точно определить концентрации золота в морях и подтвердить эти данные статистически. Содержание золота оказалось невероятно малым. За 50 лет до этого, в 1872 году, англичанин Зонштадт впервые проанализировал морскую воду из бухты Айл оф Мэн и нашел там максимально 60 мг золота на тонну, то есть на кубический метр. Другие исследователи считали, что это значение завышено. Данные колебались от 2 до 65 мг. По-видимому, они зависели от того, в каком месте Мирового океана были отобраны пробы.

Не меньшего труда стоила разработка метода количественного определения золота. Для этой цели Габер предложил микроаналитический метод, который впервые позволял уловить очень малые количества золота. Он использовал способность небольших количеств свинца, осаждаемого из раствора в виде сульфида, увлекать при осаждении все золото, содержащееся в морской воде. После отделения осадка его восстанавливали и переплавкой переводили в свинцовый королек, который содержал золото и, быть может, серебро. Свинец удаляли прокаливанием, микроостаток сплавляли с бурой. В расплаве оставалось зернышко золота, размеры которого уже можно было установить под микроскопом. Из объема шарика и известной плотности золота определялась его масса.

Такой процесс анализа должен был также служить основой производственного варианта для извлечения золота из морской воды. Габер предполагал сначала пропускать морскую воду через грубый предварительный фильтр, а затем, после добавления осадителя, просасывать через тонкий песчаный фильтр. Все эти и последующие операции предстояло проводить в открытом море.

После трех лет работы над проблемой золота Габер уверовал в свое дело: если доверять его анализам, то вода океана содержала в среднем от 5 до 10 мг золота на кубический метр. Пришлось ввести в курс дела судовые компании линии Гамбург - Америка: будет ли рентабельным процесс извлечения золота, если придется на пароходах перерабатывать гигантские количества воды? Результаты были обнадеживающими: добыча нескольких миллиграммов золота на тонну морской воды покроет производственные затраты, а превышающие это количество 1 или 2 мг пойдут в прибыль. Осуществление проекта согласились финансировать такие концерны, как «Предприятие по выделению серебра и золота» во Франкфурте-на-Майне и «Банк металлов». Габер мог создавать свою плавучую опытную лабораторию Он хотел планомерно объехать Мировой океан, чтобы исследовать, где же больше всего золота.

На перестроенной канонерке «Метеор», от которой остался только корпус и которую переоборудовали в «океанографическое исследовательское судно», искатели золота вышли в море в апреле 1925 года. Они должны были возвратиться из своего путешествия в начале июня 1927 года. Циркулируя взад и вперед между побережьями Америки и Африки, экспедиция отобрала свыше 5000 проб воды, которые были отосланы в специальных запломбированных сосудах в институт в Берлин-Далеме. Еще несколько сот проб были получены с других кораблей из бухты Сан-Франциско и с побережий Гренландии и Исландии.

В мае 1926 года в докладе «Золото в морской воде» Фриц Габер впервые открыл тайну и сообщил о шансах получения золота из морской воды. Приведенный им баланс был уничтожающим: «Золота не будет ».

Результаты первых анализов оказались…неверными. Вкрадись методические ошибки, сразу не обнаруженные, которые давали завышенное содержание золота. Слишком велика была вера в классическое химическое пробирное искусство. Вначале не было также навыков по разделению микроколичеств золота и серебра, в результате чего выделялось золото, содержащее серебро.

Профессору Габеру потребовалось длительное время, чтобы найти самые существенные источники ошибок и исключить их. В конце концов, с помощью усовершенствованного метода он мог определить с достоверностью даже миллионную часть миллиграмма (10 -9 г) золота. Совершенно не была учтена возможность занесения микроколичеств золота извне. Золото в виде следов присутствует повсюду: в реактивах, сосудах, посуде. Это - небольшие количества, но их достаточно, чтобы исказить результат микроанализа и привести к нереально завышенным значениям.

В итоге вместо 5-10 мг золота в кубическом метре морской воды Габер нашел лишь тысячную долю: в среднем от 0,005 до 0,01 мг. Только у побережья Гренландии содержание золота возросло приблизительно до 0,05 мг/м 3 . Однако золото такой концентрации можно было найти лишь в воде, полученной после таяния пакового льда. Габер исследовал также золотоносный Рейн, он учитывал тот факт, что еще сто лет назад земля Баден добывала для чеканки своих монет золото на приисках этой реки. Габер нашел в среднем 0,005 мг золота на кубический метр воды. С хозяйственно-производственной точки зрения рейнское золото также не представляло ничего привлекательного. Конечно, с водой Рейна уплывает ежегодно почти 200 кг золота, растворенного в более чем 63 миллиардах кубических метров воды. Золото в концентрациях (1-3)*10 -12 , то есть 3 части золота на 1 000 000 000 000 частей речной воды. Габер не видел возможности для рентабельной переработки столь малых следов золота. Разочарованный ученый считал, что, возможно, где-нибудь в океане и существуют пространства, в которых благородные металлы находятся в концентрациях, благоприятствующих их промышленному использованию. Габер смирился: «Я отказываюсь искать сомнительную иголку в стоге сена ».

Несмотря на множество попыток экстрагировать золото из морской воды, известен всего лишь один случай, когда были получены ощутимые количества этого металла. В связи с работами на заводе по извлечению брома, в Северной Каролине, были проведены исследование возможностей экстракции других металлов, включая золото. В результате переработки 15 т морской воды удалось извлечь 0,09 мг золота, стоимость которого составляет примерно 0,0001 долл. На сегодня это ничтожное количество составляет все то-золото, которое было извлечено из морской воды.

золото месторождение добыча ртуть

Н. В. Перцов, 3. P . Ульберг, Л. Г. Иарочко, П. И. Гвоэдяк, С 3 1 ю4М lЯ

«Ж туманского (7l) Заявнтель

Институт коллоидной химии и химии воды (5Й) СПОСОБ ИЗВЛЕЧЕНИЯ ЗОЛОТА ИЗ ВОДЫ

Изобретение относится к коллоидной химии и может быть использова" но для очистки водных дисперсий и сточных вод от взвешенных веществ, в т.ч. высокодисперсного золота, в золотодобывающей и ювелирной промышленностях и на других предприятиях цветной металлургии.

Известен способ извлечения золота из породы при помощи бактерий, который состоит в том, что они переводят золото в раствор, иэ которого оно удаляется ионообменным способом О).

Однако микроорганизмы извлекают золото, находящееся в частице породы, одновременно культивируясь на ее поверхности, при отсутствии последней использование их для извлечения, например коллоидного золота из раствора, не приводит к эффекту, Следствием этого является невозможность использования способа для очень раэбавленных растворов. Способ также очень специфичен, сложен и продолжителен.

Известен также способ очистки сточных и промывных вод, состоящий в фильтрации их через ионообменные коS лонки, в основе которого лежит процесс фиксации ионов металла или соединений металлов в ионной форме, ча-.. ще всего динка, меди или боле дорогих, например золота, частицами ионита (2).

Однако при этом не удерживаются высокодисперсные частицы металлов, и в т.ч. золота, дисперсность которого 200-300А. При пропускании через ионообменник раствора, содержащего золото в ионном состоянии с концентрацией 0,03 r/ë (в виде дицианурата) и коллоидного золота 0,03 г/л в растворе остается золото в ионном состоянии менее 0,001 г/л, в то время как содержание коллоидного золота изме.няется гишь на 10-12Ф. В промывных

3 и сточных водах ювелирных фабрик и других производств остается до

15 мг/л коллоидного золота, которое не может быть удалено существующими способами. Технология ионного обмена предусматривает необходимость проведения стадии регенерации, сопряженной с расходованием значительного количества солей, кислот и щелочей, а также готового продукта - чистой воды. Процент извлечения коллоидного золота составляет 10- 143, а ионного—

Целью изобретения является повышение степени извлечения золота из воды.

Поставленная цель достигается тем, что в воду, содержащую золото в коллоидном состоянии, вводят дрожжи, родов Saccharomyces, или Candida, . или Rodotoru1а, или бактерии Escher i chi a смесь выдерживают предпочтительно 5-45 мин, отделяют дисперсную фазу и извлекают золото. Предпочтительно вводить микроорганизмы в количестве 106-10 кл/мл на 1 мг/мл золота.

Способ осуществляют следующим оЬразом: 30

Используют культуры хорошо известных и применяемых в технологии микроор ra ни змов — дрожжи Sa ccha romyces или Candida, или Rodotorula, или

Escherichia со 11.

Культуры дрожжей выращивают в течение суток на сусло-агаре, а бактерий - на мясо-пептонном агаре, смывают физиологическим раствором (10 4моль/л NaC

Ь» 8 на нефелометре ФЗК-56 кювета 3,055, и светофильтр 6 вводят в водный раствор золота с концентрацией 0,030,24 мг/мл, выдерживают в течение

5-45 мин, затем отделяют дисперсную фазу путем центрифугирования или электроудерживания и извлекают золото, например, сжигая полученную массу. Содержание золота определяют на. Уф-спектрофотометре с помощью калибровочной кривой.

Оптимальное время разное для разных видов микроорганизмов, например для Saccharomyces vini u Candida ,util!s 15 мин, Rodotorulà glutinis—

30 мин, а для бактерий Escherichia

coli - 45 мин, кроме того, способность микроорганизмов к агрегированию с золотом зависит от возраста культуры ° Например для 4-х суточной культуры необходимое время контакта увеличивается по сравнению с 2-х суточной.

Пример 1. К 50 мл сточной воды ювелирной фабрики, содержащей коллоидное золото с концентрацией

0,03 мг/мл добавляют 50.мл суспензии культуры Saccharomyces vini c концентрацией 3 ° 1 0 кл/мл. Время контакта 30 мин. Полученную массу центрифугируют в течение 5 мин при

5000 об/мин, отделяя воду. Содержание золота в последней составляет

0,001 мг/мл. При этом извлекают

1,40 кг золота.

Пример 2. К 50 мл водной дисперсии, содержащей 0,24 мг/мл кол" лоидного золота, добавляют 50.мл суспензии культуры Saccharomyces vlni с концентрацией 3.108кл/мл. Время контакта составляет 45 мин. Суспензию пропускают через ячейку электроудерживания, которая состоит из центральной рабочей камеры и двух электродных камер, отделенных от рабочей целлофановыми мембранами.

Центральную камеру ячейки заполняют гранулированным силикагелем. В рабочей камере создают электрическое поле напряженностью 50 В/см при скорости потока 1,5 мл/мин. По данным

УФ-спектрофотометра происходит полное извлечение (удерживание на силикагеле) дисперсного золота. В таблице представлены сравнительные данные по степени извлечения золота из воды предложенным и известным способами.

Способ позволяет извлекать из водных растворов и сточных вод высокодисперсное золотс практически полностью (на 98-993).

Использование предложенного способа только на одной ювелирной фибрике позволит получить ожидаемый экономический эффект 50-60 тыс. руб. в год, 948897

S C5 а с5 б- о

I5 х бх о х

С1 о к о о.

СР CD CD о о о

° ° м м м а с и

U о с () х с со с

LA сч о о о о о

° ° о о а о

СЛ CA о о о о бб\ СС\ о о о о о ю

О О м м о о

Составитель Г. Лебедева

Редактор М. Товтин Техред М.Надь Корректор Г. Решетник

Заказ 5688/1

Тираж 981 Под пи сное

ВНИИПИ Государственного комитета СССР по делам изобретений и открытий

113035, Москва, N-35, Раушская наб., д. 4/5 филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

Формула изобретения вводят в воду в количестве 10 1О кл/мл на 1 мг/мл золота.

1. Способ извлечения золота из во- 3. Способ по пп. 1 и 2, о т л иды, отличающийся тем, что, ч а ю шийся тем, что воду с с целью повышения степени извлече- микроорганизмами выдерживают в течения, в воду предварительно вводят - we 5-45 мин. дрожжи родов Saccharomyces, или Сап- Источники информации, dida, или Rodotorula, или бактерии принятые во внимание при экспертизе